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ABSTRACT 

A new SU( 1,i) coupling scheme, based on the discrete class 

representations, is proposed to construct factorizable dual amplitudes. 

We introduce dual vertices for off-shell particles of even spin and 

discuss other applications of the method. Our analysis suggests the 

non-existence of a dual vector current within the context of the conven- 

tional Veneziano model. 
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Recently, general criteriai for the construction of dual amplitudes 

have been formulated based on a continuous class representation of 

SU(1, q2. Unfortunately, the coupling scheme between the SU(i, 1)- 

covariant vertices broke down when the external particles were taken off 

their mass-shells, thus preventing the construction of dual current 

amplitudes. In this letter we present similar general criteria for the 

construction of dual amplitudes based on the discrete class representations 

of SU(i, 1). In this way, we obtain amplitudes of a kind that have recently 

arisen in the generalization of the Virasoro amplitude3 as well as in the 

4 5 
context of dual treatments of the pomeron and of scalar currents 

Again, we point out that these rules are more general than any particular 

dual model, thereby supporting the fundamental connection between SU(l, 1) 

and the duality property. 

We consider amplitudes of the form 

where V(ki) represents the absorption of a particle of momentum ki, and 

is built in the following way. Take operator functions of k and z, G(k, z) 

and H(k, z), each of which transforms as a spin J representation of the 

discrete class of SU(l,l). 
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That is, under a finite transformation (see Eq. (A-20) of Ref. 2) 

e 4’SsL cl,+) e -A5’L = (de-- pzfJ G lk,z”) (2) 

where 

Zf’ . 4z -p 
“(*-.p+z 

(3) 

and the Li(i=l, 2, 3) are the generators of the algebra. Identical equations 

hold for H(k, a). Then V(k) is given by the invariant inner product over 

the group space (see Eq. (A-19) of Ref. 2) 

i/(h) - sd”z (i-~~a~3T~’ G&) /i&z) 

where the integration extends over the unit circle. Clearly AN(kl, . . , kN) 

is an SU( 1, 1) invariant. Strictly speaking, it is not necessary for G and 

H to be separately covariant, for any function K(z) satisfying 

e ;jd. l((z) pysl = /4*-p.* / +3- 
k cd 

(5) 

where z is an arbitrary point inside the unit circle will suffice in place 

of G+H. 
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As an example of the above compling scheme, we might take 

where 

(6) 

(7a) 

with 
6 

(7b) 

(8a) 

[ix, 6 J I- jj~, b’] = D (8b) 
and E is an infinitesimal taken to zero at the end of all calculations. 

In addition we choose 

G iiJ 2) ‘= M-4, z) 

It can be checked that both H and G satisfy the requirement of 

Eq. 2 with J=O, where the SU (1,1) generators are now the sum 

of the generators made out of a and b operators. 

(9) 

+Actually H and G are covariant only up40 terms of order E 
which become harmless in the combination G H. 
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The SU (1, 1) invariant vertex is then given by 

v(/(k j = )4’l (b- bfj-’ e i7 i k’E@ ci&f;-lt\ 
e 

L;*fiz) 
e 

;&E(z) 

[$I $+-j Wa) ef”i +&.+,yig 
(lob) 

where we have used 

i &, = Fe) 
(11) 

with z being the electrostatic reflection of z with respect to the unit 

circle 

(12) 

We note that this vertex retains its SU (1, 1) invariance when k2 

is taken of mass shell. The N point amplitude corresponding to this 

vertex is obtained from Eq. 1 and is given by 

A, Ck,& = 
i 
7E! & 
L,=' &-h/y- i (13) 

An expression of this form was proposed by Rebbi and Drummond (4) 

in connection with scalar currents. As shown by these authors, the 

amplitude has poles at $kf=l, 0, -1, -2,. which can be directly seen 

by expanding the integrand of V(k) around the unit circle: 



-6- THY - 11 
Revised 

2-r 
V’(k) = 

i 
d(j 2 ‘tdk,” 

0 

with (Y 
0 

= 1. The residue of the Ist pole is the on-shell Veneziano 

vertex written in terms of the operators 

tit Cf - & rl (L;nt+ q, 

i. e. 

RJBJ k) = e 
;,(!* f(eiB) i&# f(C’e) 

e 

The residue of the second pole, however, is antisymmetric under 

interchange of a and b operators and thus decouples from an arbitrary 

number of on-shell mesons represented by the vertex (16). 

The building of off-shell vertices for even spin particles is 

relatively straightforward, using for H and G on-shell vertices 

previously derived. f,7 As an example, for spin two, we start from 

$ikf) = z -’ 
ik.[h@ [p,,(z) i Q-q c q lJ 

where 

JA (z) a 
= -A ZLfZ (cy. Qg) G‘L (z) 

QzI = -A + (4 - h#f, @z) 
z N 

(17) 

Wa) 

(18b) 
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and 

whence we construct the vertex 

yp(lc) -.= [.Lz c,&j $J,z) 

(19) 

(20) 

We note again that, although H is not strictly covariant, in the 
P 

combination G+H the covariance is regained apart from terms 

proportional to (p, - p ) which annihilate all states in the model 

a ‘b’ 
even those off mass shell. 

The spin two part of the vertex (20) has poles atCY (-k2) = 2, 3,. . 

with the residue of the first pole being equal to the conventional spin 

two vertex 1,7 written in terms of the c operators together with 

another spin two vertex which decouples from on-mass-shell scalars 

since it involves the combination (a-b). The trace of vertex (20) 

haspolesata(-k2) =0,1,2,... because it contains a piece proportional 

to the vertex 10. Due to the bilinear nature of the coupling scheme, 

the construction of a true vector current does not appear to be a 

straightforward application of this method. 

As a second example we consider the choice 
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G,i+=) = y+) 
(22) 

This time both H and G strictly satisfy the requirement of Eq. 2 

with J = -k2/4. The SU(1, 1) invariant vertex is then given by 

and the corresponding N point amplitude is then 

(24) 

This expression is equivalent to the one originally proposed by 

Drummond(9’ to represent the off shell Veneziano amplitude. However, 

Eq. 24 has poles in ki. kj . instead of in (ki + k.)2 because zi can 
J 

approach zj inside the unit circle where there are no compensating 

factors from the 1- 1 z 1 2 terms. Therefore, it is unsuited for an 

off shell amplitude. Nevertheless, this amplitude has merits of its 

own since it can be regarded as a scattering amplitude for fixed 

values of kf (# 2, -2, -6.. . ). In particular at the point 

o(*= f$ =q i = (y?.,. lu”) 
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It reduces to the form proposed as the N point generalization of the 

Virasoro amplitude3. We emphasize that although this amplitude has 

higher symmetry for cro = 2, it has been derived solely from an 

SU (1,i) coupling scheme. Indeed the duality of the n -dimensional 

generalization of this type of amplitude can be understood in terms of 

representations of SU( 1,i) in higher dimensional spaces. 

Furthermore, for any 

n(, 5 kiL + !, ,-5-3,. 
a 

this amplitude retains its s-t-u symmetry, and may thus be the 

proper continuation incuo of the Shapiro-Yoshimura formula. 

Still another possible vertex is obtained by choosing 

/l+) = I- k2- e -2 “ 

b%,$ F,L4 

G&-Z\ = tic-k,z) 

(2Ea) 

Where only the a operators are used, hence we will drop 

the a subscripts in what follows. The vertex is 

\/(k) ,= I”; 

0.6) 

the corresponding amplitude is 

AN ‘= /jfPz; (i-/q~~k’k-~i; (j~-zy,/-~~,f ‘~4 
(27) 
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which can be shown to have no overlapping poles; however it also 

has poles in k.k., which make it unsuitable for an off-shell dual 
13 

amplitude. 

In conclusion we would expect that the scheme presented here, 

besides allowing for the above synthesis of recent work, will find 

its widest application in conjunction with the introduction of new 

oscillators. 
10,11,12,13 

Thus for example while we have discovered 

intrinsic problems with the construction of a vector current in the 

conventional Veneziano model, the coupling scheme of Eq. (4) 

readily lends itself to the building of a vector current in bilinear 

models such as those of Refs. (10) and (11). 
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